Alternative Optimal Solutions

Consider the linear program

or

$$\begin{array}{rll} \min & -6x_1 - 4x_2 + 0x_3 + 0x_4 + 0x_5 \\ \text{s.t.} & x_1 + 4x_2 + x_3 & = 40 \\ & 3x_1 + 2x_2 + & x_4 & = 30 \\ & 3x_1 + x_2 + & x_5 & = 24 \\ & x_1, x_2, x_3, x_4, x_5 \ge 0 \end{array}$$

An optimal basis for this problem consists of $\{a_1, a_2, a_5\}$ with $x^* = [4, 9, 0, 0, 3]^T$ and objective value $z^* = -60$. We compute reduced costs for the nonbasic variables using w = [0, -2, 0]:

 $rc_3 = 0 - [0, -2, 0] a_3 = 0$ $rc_4 = 0 - [0, -2, 0] a_4 = 2$

However there is a zero reduced cost for x_3 , which signals the possibility of alternative optimal solutions. Recall the expressions for z and x_B in terms of the nonbasic variables:

Ζ	=	-60	+	0x ₃	+	2x ₄
x ₁	=	4	+	.2x ₃	—	.4x ₄
x 2	=	9	-	.3x ₃	+	.1x ₄
Х ₅	=	3	_	.3x ₃	+	1.1x ₄

These relationships hold for all feasible values of x; we have simply rearranged Ax = b. Therefore any alternative optimal solution satisfies $z = -60 + 2x_4 = -60 \Rightarrow x_4 = 0$. Substituting this into the above, and parameterizing with $x_3 = t$, yields

 $x_1 = 4 + .2x_3 = 4 + .2t$ $x_2 = 9 - .3x_3 = 9 - .3t$ $x_5 = 3 - .3x_3 = 3 - .3t$

Of course we need all basic variables to be nonnegative so that produces the range $0 \le t \le 10$.

The set of all optimal solutions consists of the points

 $x = [4 + .2t, 9 - .3t, t, 0, 3 - .3t], 0 \le t \le 10$

In particular, when t = 0 this gives the optimal basic feasible point

x = [4, 9, 0, 0, 3]

When t = 10 this gives the optimal basic feasible point

x = [6, 6, 10, 0, 0]

Other optimal, but not basic solutions, are obtained by using 0 < t < 10.

Geometric Interpretation

We illustrate the feasible region of this linear program in the (x_1, x_2) plane and the set of all alternative optimal solutions.

In higher dimensions the intersection of the objective function hyperplane can be a point (unique) or an edge, a face, ...

The optimal solution set is a smaller-dimensional set within the original polyhedron.